Instability of Contact Resistance in MEMS and NEMS DC Switches under Low Force: the Role of Alien Films on the Contact Surface
نویسندگان
چکیده
The metal contact is one of the most crucial parts in ohmic-contact microelectromechanical (MEMS) switches, as it determines the device performance and reliability. It has been observed that there is contact instability when the contact force is below a threshold value (minimum contact force). However, there has been very limited knowledge so far about the unstable electrical contact behavior under low contact force. In this work, the instability of Au-Au micro/nano-contact behavior during the initial stage of contact formation is comprehensively investigated for the first time. It has been found that the alien film on the contact surface plays a critical role in determining the contact behavior at the initial contact stage under low contact force. A strong correlation between contact resistance fluctuation at the initial contact stage and the presence of a hydrocarbon alien film on the contact surface is revealed. The enhancement of contact instability due to the alien film can be explained within a framework of trap-assisted tunneling.
منابع مشابه
Design and simulation of a RF MEMS shunt capacitive switch with low actuation voltage, low loss and high isolation
According to contact type, RF MEMS switches are generally classified into two categories: Capacitive switches and Metal-to-Metal ones. The capacitive switches are capable to tolerate a higher frequency range and more power than M-to-M switches. This paper presents a cantilever shunt capacitive RF MEMS switch with characteristics such as low trigger voltage, high capacitive ratio, short switchin...
متن کاملDynamic and Static Pull-in instability of electrostatically actuated nano/micro membranes under the effects of Casimir force and squeezed film damping
In the current study, the effects of Casimir force and squeeze film damping on pull-in instability and dynamic behavior of electrostatically actuated nano and micro electromechanical systems are investigated separately. Linear elastic membrane theory is used to model the static and dynamic behavior of the system for strip, annular and disk geometries. Squeeze film damping is modeled using nonli...
متن کاملThe effect of small scale and intermolecular forces on the nonlinear Pull-in instability behavior of nano-switches using differential quadrature method
Using differential quadrature method (DQM), this study investigated pull-in instability of beam-type nano-switches under the effects of small-scale and intermolecular forces including the van der Waals (vdW) and the Casimir forces. In these nano-switches, electrostatic forces served as the driving force, and von-Karman type nonlinear strain was used to examine nonlinear geometric effects. To de...
متن کاملComparison of Au and Au–Ni Alloys as Contact Materials for MEMS Switches
This paper reports on a comparison of gold and gold–nickel alloys as contact materials for microelectromechanical systems (MEMS) switches. Pure gold is commonly used as the contact material in low-force metal-contact MEMS switches. The top two failure mechanisms of these switches are wear and stiction, which may be related to the material softness and the relatively high surface adhesion, respe...
متن کاملTemperature dependence of asperity contact and contact resistance in gold RF MEMS switches
Experimental measurements and modeling predictions were obtained to characterize the electro-mechanical response of two different gold contact radio frequency microelectromechanical system (RF MEMS) switches due to variations in the temperature and applied contact voltage. A three-dimensional surface roughness profile from AFM measurements of the top contact surface of a sample RF MEMS switch w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 13 شماره
صفحات -
تاریخ انتشار 2013